Preparation of Alkyl tert-Butyl Iminodicarbonates

J. Michael Chong* and Sheldon B. Park

Guelph-Waterloo Centre for Graduate Work in Chemistry, Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Received July 16, 1993

Iminodicarbonates are becoming important reagents for the introduction of protected amino functionalities into organic compounds. The most commonly employed iminodicarbonate di-tert-butyl iminodicarbonate (1) was originally introduced by Carpino in 1964 as an alternative Gabriel reagent.¹ The use of 1 produces a protected primary amine that can be deprotected under much milder conditions than those required for removal of a phthaloyl group. However, it was only after the introduction of convenient procedures for the preparation of $1^{2,3}$ that it has become more widely used.^{4,5}

For example, it has recently been shown that some iminodicarbonates are effective nucleophiles in Mitsunobu reactions.⁶⁻⁸ The electron-withdrawing properties of the alkyl groups on the iminodicarbonate appear to be very important with compounds such as PhCH₂OC(O)NHC- $(O)OCMe_2CCl_3$ giving much higher yields than the corresponding non-chlorinated analogue; compound 1 seems to be a particularly poor nucleophile in Mitsunobu reactions.8c

As part of our work with α -aminostannanes,⁹ we desired a nitrogen nucleophile that could be used in Mitsunobu reactions and could be readily transformed into a t-BOCprotected amine. Reaction of α -hydroxy stannanes with 1 under Mitsunobu conditions gave only poor (<30%) yields of the alkylated iminodicarbonate. We thus decided to investigate the use of alkyl tert-butyl iminodicarbonates as nucleophiles under the premise that electron-withdrawing groups might increase the yields of products. Also, alkyl tert-butyl iminodicarbonates have the advantage that the product could be selectively deprotected to afford either alkyl or *tert*-butyl carbamates.^{10,11}

(7) For a review on Gabriel reagents, see: Ragnarsson, U.; Grehn, L. Acc. Chem. Res. 1991, 24, 285.

(8) (a) Grehn, L.; Ragnarsson, U. Collect. Czech. Chem. Commun. 1988, 53, 2778. (b) Grehn, L.; Almeida, L. S.; Ragnarsson, U. Synthesis 1988, 992. (c)Koppel, I.; Koppel, J.; Degerbeck, F.; Grehn, L.; Ragnarsson, U. J. Org. Chem. 1991, 56, 7172. (9) Chong, J. M.; Park, S. B. J. Org. Chem. 1992, 57, 2220.

(10) For example, treatment of an tert-butyl methyl N-alkyliminodicarbonate with NaOH provided the Boc derivative while treatment with TFA gave the methyl carbamate.²

(11) Very recently, tert-butyl [[2-(trimethylsilyl)ethyl]sulfonyl]carbamate has been described as a useful reagent in Mitsunobu reactions: Campbell, J. A.; Hart, D. J. J. Org. Chem. 1993, 58, 2900.

Only two alkyl tert-butyl iminodicarbonates (other than 1) have been described in the literature: $2a (R = Me)^2$ and 2b (R = PhCH₂).^{8a,b} The routes to 2a and 2b are quite different: 2a is prepared by oxidation of tert-butyl oxamate with $Pb(OAc)_4$ in the presence of $MeOH^2$ while **2b** may be prepared by addition of *t*-BuOH to benzovl isocyanate^{8*} or from benzyloxycarbonyl isocyanate.^{8b} The use of PhCH₂OH in the tert-butyl oxamate procedure does not produce useful yields of 2b; other alcohols may be reacted with PhCH₂OC(O)NCO to give alkyl benzyl iminodicarbonates. However, there appears to be no general route to alkyl tert-butyl iminodicarbonates (2).

We now report that compounds 2 may be conveniently prepared from alkyl chloroformates in three steps with minimal purification of intermediates and in high overall yields.

In principle, the most straightforward route to 2 is direct tert-butyloxycarbonylation of O-alkyl carbamates. Unfortunately, we found that treatment of methyl carbamate under a variety of conditions typically used for tertbutyloxycarbonylation of amides (e.g. Boc₂O, cat. DMAP, CH₃CN)¹² provided mixtures of compounds containing only small amounts of the desired iminodicarbonate 2a. These results are in agreement with a report^{8a} that attempted direct tert-butyloxycarbonylation of benzyl carbamate gave an intractable mixture.

We reasoned that mixtures were arising from competing further tert-butyloxycarbonylation of iminodicarbonate 2. Thus a successful preparation of 2 might entail the use of a protecting group that could be easily removed after formation of an N-alkyliminodicarbonate. The p-methoxybenzyl group was chosen since (a) p-MeOC₆H₄CH₂- NH_2 is readily available and (b) it is removed under oxidative conditions that should not affect the alkyl groups (*i.e.* R in 2) that would be of interest.¹³

A series of iminodicarbonates were prepared as shown in the Scheme I. Reaction of 4-MeOC₆H₄CH₂NH₂ with alkyl chloroformates 3 under Schotten-Baumann type conditions (NaOH, THF-H₂O) gave crystalline carbamates 4. Treatment of these carbamates with Boc₂O in the presence of DMAP then provided alkyl tert-butyl N-(pmethoxybenzyl)iminodicarbonates 5.11 Finally, oxidation of 5 with ceric ammonium nitrate (CAN)¹⁴ furnished the desired iminodicarbonates 2 in high (75-95%) overall yields (Table I). The intermediates 4 and 5 were easily isolated by simple extractive workup and were used without further purification. The byproduct resulting from oxidation of the *p*-methoxybenzyl group, *p*-anisaldehyde, was removed by extraction with aqueous KHSO₃. In most cases, the crude product 2 obtained with no

© 1993 American Chemical Society

Carpino, L. A. J. Org. Chem. 1964, 29, 2820.
 Clarke, C. T.; Elliott, J. D.; Jones, J. H. J. Chem. Soc. Perkin Trans. 1978, 1088.

⁽³⁾ Grehn, L.; Ragnarsson, U. Synthesis 1987, 275.

⁽⁴⁾ For recent examples, see: (a) Connell, R. D.; Rein, T.; Åkermark, B.; Helquist, P. J. Org. Chem. 1988, 53, 3845. (b) Connell, R. D.; Helquist, P.; Åkermark, B. J. Org. Chem. 1989, 54, 3359. (c) Arcadi, A.; Bernocchi, E.; Cacchi, S.; Caglioti, L.; Marinelli, F. Tetrahedron Lett. 1990, 31, 2463. (d) Altmann, E., Nebel, K.; Mutter, M. Helv. Chem. Acta 1991, 74, 800. (e) Degerback, F.; Fransson, B.; Grehn, L.; Ragnarsson, U. J. Chem. Soc. Perkin Trans. 1 1992, 245. (f) Degerback, F.; Fransson, B.;

<sup>Grehn, L.; Ragnarsson, U. J. Chem. Soc. Perkin Trans. 1 1993, 11.
(5) Dibenzyl iminodicarbonate has also been used: Takeuchi, Y.;</sup> Nabetani, M.; Takagi, K.; Hagi, T.; Koizumi, T. J. Chem. Soc. Perkin Trans. 1 1991. 49.

⁽⁶⁾ For a review on the Mitsunobu reaction, see: Hughes, D. L. Org. React. 1992, 42, 335.

⁽¹²⁾ Grehn, L.; Ragnarsson, U. Angew. Chem., Int. Ed. Engl. 1985, 24, 510.

⁽¹³⁾ These alkyl groups are some that are used in carbamate protecting groups for amines: Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Chemistry, 2nd ed.; Wiley: New York, 1991; pp 315–348. (14) Yamaura, M.; Suzuki, T.; Hashimoto, H.; Yoshimura, J.; Okamoto,

T.; Shin, C.-G. Bull. Chem. Soc. Jpn. 1985, 58, 1413.

 Table I.
 Preparation of Iminodicarbonates and Their Reaction with 2-Octanol⁴

entry	R	% yield of 2 ^b (no.)	$\%$ yield of 6^c (no.)
1	CH ₃	75 (2a)	65 (6a)
2	PhCH ₂	93 (2b)	62 (6b)
3	Cl ₃ CCH ₂	95 (2c)	71 (6c)
4	CH2=CHCH2	85 (2d)	61 (6d)
5	4-NO ₂ C ₆ H ₄ CH ₂	81 (2e)	76 (6e)
6	menthyl	80 (2f)	54 (6f)
7	F ₃ CCH ₂	$85 \ (2g)^d$	88 (6g)
8	(CH ₃) ₃ C	e	40 (6h)

^a The sequence shown in Scheme I was used to prepare iminodicarbonates 2. Subsequent reaction with 2-octanol under Mitsunobu conditions (see Experimental Section) provided 6. ^b Isolated yield of 2 based on 3. ^c Isolated yield of 6 based on 2-octanol. ^d Isolated yield of 2 based on carbonate 7. ^e Di-*tert*-butyl iminodicarbonate was prepared according to ref 3.

purification of intermediates was essentially pure by ${}^{1}H$ NMR and TLC analysis. Thus the overall conversion of 3 to 2 may be carried out with high efficiency.

We briefly examined the reactions of these new iminodicarbonates as nucleophiles under Mitsunobu conditions. Reactions with 2-octanol proceeded in the yields shown in Table I. As anticipated, on the basis of Ragnarsson's earlier studies, those iminodicarbonates with electron-withdrawing groups (*i.e.* 2c, $R = CCl_3CH_2$ and 2e, $R = 4-NO_2C_6H_4CH_2$) gave the best yields (71-76%). Other alkyl groups gave slightly lower yields while a larger menthyl group gave only a mediocre yield. By comparison, a 40% yield of 6h was obtained using di-*tert*-butyl iminodicarbonate (1) under the same conditions.

These results suggested that both electronic and steric considerations are important in Mitsunobu reactions employing alkyl *tert*-butyl iminodicarbonates as nucleophiles; one should observe better yields with alkyl groups that are relatively small and electron-withdrawing. We thus decided to prepare the CF₃CH₂ analogue 2g. The required chloroformate is not commercially available¹⁵ but, fortunately, a mixed carbonate served as a surrogate extremely well: Phenyl 2,2,2-trifluoroethyl carbonate (7) was easily prepared (CF₃CH₂OH, ClCO₂Ph, pyr, 100%) and reacted with 4-MeOC₆H₄CH₂NH₂ to provide carbamate 4g in high yield.¹⁶ Subsequent application of the newly developed protocol furnished the desired iminodicarbonate 2g in 85% overall yield from 7. Finally, and perhaps most importantly, the Mitsunobu reaction of 2gwith 2-octanol proceeded in high yield (88%), consistent with expectations.

$$CF_{3}CH_{2}OH \xrightarrow{CICO_{2}Ph} CF_{3}CH_{2}O \xrightarrow{O} OPh \xrightarrow{O} 2g$$

The trifluoroethyl iminodicarbonate **6g** could be converted cleanly to *t*-BOC-protected amine **8** by base hydrolysis (1 M NaOH, THF-H₂O, rt, 96% yield). Similarly, the trichloroethyl derivative **6c** (Zn, NH₄OAc, 96% yield)¹⁷ and the *p*-nitrobenzyl compound **6e** [H₂/Pd(OH)₂, 92% yield]¹⁸ were transformed into **8** under relatively mild conditions. Thus the iminodicarbonates **2c,e,g** should be especially useful as Mitsunobu nucleophiles for the synthesis of *t*-BOC-protected amines.

In summary, the three-step sequence shown in Scheme I represents a reasonably general route to alkyl *tert*-butyl iminodicarbonates. The operational simplicity of the chemistry and high overall yields observed make this route to 2 an attractive one. The ready availability of 2 should encourage their use as nucleophiles in Gabriel and Mitsunobu syntheses of protected amines.

Experimental Section

General. All reactions were carried out with dry glassware under an atmosphere of argon unless otherwise noted. All reagents were purchased (Aldrich) and used without further purification. Infrared spectra were recorded as neat liquids or Nujol mulls between NaCl plates or as KBr pellets. ¹H and ¹⁸C NMR spectra were recorded with CDCl₃ as solvent using fields of 4.6 or 5.9 T; tetramethylsilane (1 H, δ 0.0) or CDCl₃ (13 C, δ 77.0) were used as internal references. ¹H NMR data are presented as follows: chemical shift (multiplicity, integration, J in hertz). Selected data for new compounds are presented in Table II. Mass spectra were recorded using EI (70 eV) ionization; compounds 4 and 5 exhibited M⁺ ions while compounds 2 and 6 consistently exhibited M + 1 ions (except 2d which showed a M + 1 - C_4H_9 ion). Elemental analyses were performed by M-H-W Laboratories, Phoenix, AZ; all new compounds gave satisfactory combustion analyses.

(1R,2S,5R)-Menthyl chloroformate was used and afforded derivatives with the following optical rotations: **2f**: $[\alpha]^{22}D-54.4^{\circ}$ (c 1.4, EtOAc); **4f**: $[\alpha]^{22}D-41.6^{\circ}$ (c 1.2, EtOAc); **5f**: $[\alpha]^{22}D-37.5^{\circ}$ (c 1.3, EtOAc).

General Procedure for the Preparation of Alkyl N-(p-Methoxybenzyl)carbamates 4. To a cooled (0 °C) solution of 4-methoxybenzylamine (1 equiv) in a 4:1 mixture of 2 M NaOH (2 equiv) and THF was added the alkyl chloroformate 3 dropwise. The ice bath was removed and the resulting mixture was stirred for 1 h. Ether was then added and the ethereal solution was washed with water, dried over MgSO₄, filtered, and concentrated in vacuo to give the products as white solids. Analytically pure samples were obtained by recrystallization.

^{(15) 2,2,2} Trifluoroethyl chloroformate has been prepared but its volatility and water sensitivity make it inconvenient to handle: Gupton, B. F.; Carroll, D. L.; Tuhy, P. M.; Kam, C. M.; Powers, J. C. J. Biol. Chem. 1984, 259, 4279. Gilligan, W. H.; Stafford, S. L. Synthesis 1979, 600.

⁽¹⁶⁾ Primary carbamates have been prepared by treatment of alkyl phenyl carbonates with NH₃: McLamore, W. M.; P'An, S. Y.; Bavley, A. J. Org. Chem. 1955, 20, 1379.

⁽¹⁷⁾ Just, G.; Grozinger, K. Synthesis 1976, 457.

⁽¹⁸⁾ Shields, J. E.; Carpenter, F. H. J. Am. Chem. Soc. 1961, 83, 3066.

Table II. Selected Spectral Data for Compounds 2 and 4-6

com- pound	mp (°C) or R_f (solvent) ^a	IR (cm ⁻¹)	¹ H NMR (CDCl ₃) δ	¹³ C NMR (CDCl ₃) δ
2a	69-70 ^b (H)	3260, 1778, 1519	6.99 (br s, 1 H), 3.78 (s, 3 H), 1.49 (s, 9 H)	151.73, 149.48, 82.26, 52.70,
2c	99.5-100.5 (25.1 H/EE)	3259, 1792, 1722	7.16 (br s, 1 H), 4.79 (s, 2 H), 1.52 (s, 9 H)	27.76 149.18, 148.98, 94.45, 83.02, 74.41, 27.79
2d	0.25 (DM)	3277, 1759, 1507	6.85 (br s, 1 H), 5.92 (ddt, 1 H, $J = 17.1$, 10.4, 5.7 Hz), 5.35 (ddt, 1 H, $J = 17.1$, 1.3, 1.3), 5.26 (ddt, 1 H, $J = 5.7$, 1.3, 1.3 Hz), 4.65 (ddd, $J = 5.7$, 1.3, 1.3 Hz), 1.50 (s, 9 H)	150.83, 149.44, 131.39, 118.60, 82.20, 66.14, 27.74
2e	103–104 (5:1, H/EE)	3284, 1782, 1519	8.22 (m, 2 H), 7.55 (m, 2 H), 7.01 (br s, 1 H), 5.29 (s, 2 H), 1.50 (s, 9 H)	150.63, 149.13, 147.71, 142.50, 128.35, 123.66, 82.77, 65.77, 27.83
2f	0.25 (4:1, H/EE)	3277, 1783, 1717	6.80 (s, 1 H), 4.66 (td, 1 H, $J = 4.4$, 10.9 Hz), 2.1–1.8 (m, 8 H), 1.49 (s, 9 H), 0.90 (d, 3 H, $J = 6.5$ Hz), 0.89 (d, 3 H, $J = 7.0$ Hz), 0.78 (d, 3 H, $J = 6.9$ Hz)	150 46, 149.45, 81.40, 75.32, 46.47, 40.39, 33.63, 30.82, 27.47, 25.55, 22.86, 21.44, 20.24, 15.80
2 g	91.5–92.5 (H)	3283, 1800, 1726	7.14 (br s, 1 H), 4.52 (q, 2 H, $J_{\rm HF}$ = 8.3 Hz), 1.50 (s, 9 H)	149.32, 149.05, 122.53 (q, $J_{CF} =$ 277 Hz), 83.09, 60.91 (q, $J_{CF} =$ 37 Hz), 27.66
4a	73–74 (6:1, H/EE)	3321, 1693, 1550	7.20 (m, 2 H), 6.85 (m, 2 H), 4.98 (br s, 1 H), 4.28 (d, 2 H, $J = 5.8$ Hz), 3.79 (s, 3 H), 3.68 (s, 3 H)	130.66, 128.65, 113.90, 55.08, 51.92, 44.46
4b	80.0–80.5 (7:1, H/EE)	3317, 1689, 1550	7.34 (s, 5 H), 7.18 (m, 2 H), 6.86 (m, 2 H), 5.13 (s, 2 H), 4.31 (d, 2 H, $J = 5.8$ Hz), 3.79 (s, 3 H)	158.84, 156.27, 136.43, 130.46, 128.76, 128.36, 127.96, 113.87, 66.61, 55.12, 44.45
4c	61.5–62.0 (6:1, H/EE)	3317, 1710, 1524	7.23 (m, 2 H), 6.87 (m, 2 H), 5.26 (br s, 1 H), 4.75 (s, 2 H), 4.35 (d, 2 H, $J = 5.9$ Hz), 3.80 (s, 3 H)	158.97, 154.52, 129.85, 128.82, 113.97, 95.54, 74.41, 55.16, 44.63
4d	46.5-47.0 (H)	3318, 1691, 1540	7.21 (m, 2 H), 6.85 (m, 2 H), 5.92 (ddt, 1 H, $J = 10.4$, 17.2, 5.6 Hz), 5.29 (ddt, 1 H, J = 17.2, 1.5, 1.5 Hz), 5.21 (ddt, 1 H, $J = 10.4$, 1.4, 1.4 Hz), 5.05 (br s, 1 H), 4.58 (d, 2 H, $J =$ 5.6 Hz) 4.30 (d, 2 H, $J =$ 5.6 Hz), 3.79 (s, 3 H)	158.68, 156.12, 132.74, 130.51, 128.59, 117.27, 113.72, 65.32, 54.97, 44.27
4e	103–104 (2:1, H/EE)	3298, 1692, 1522	8.20 (m, 2 H), 7.50 (m, 2 H), 7.25 (m, 2 H), 6.88 (m, 2 H), 5.21 (s, 2 H), 5.15 (br s, 1 H), 4.32 (d, 2 H, J = 59 Hz), 3.80 (s, 3 H)	159.03, 155.77, 147.45, 143.99, 130.13, 128.86, 127.99, 123.63, 114.01, 65.12, 63.76, 55.20, 44.63
4f	103.0–103.5 (50:1, H/EE)	3361, 1686, 1525	7.20 (m, 2 H), 6.86 (m, 2 H), 4.82 (br s, 1 H), 4.58 (td, 1 H, $J = 4.3, 10.8$ Hz), 4.29 (br d, $J = 6.0$ Hz), 3.80 (s, 3 H), 2.1–0.9 (m, 9 H), 0.90 (d, 3 H, $J = 6.5$ Hz), 0.88 (d, 3 H, J = 6.9 Hz)	158.62, 156.29, 130.85, 128.49, 113.68, 74.30, 54.92, 47.14, 44.18, 41.25, 34.07, 31.12, 25.98, 23.28, 21.84, 20.58, 16.23
4g	78.0–78.5 (5:1, H/EA)	3317, 1706	J = 7.0 Hz), 0.79 (d, 3 H, $J = 0.5$ Hz) 7.3-7.1 (m, 2 H), 6.9-6.8 (m, 2 H), 5.21 (br s, 1 H), 4.43 (q, 2 H, $J = 8.5$ Hz), 4.32 (d, 2 H, $J = 5.9$ Hz), 3.80 (s, 3 H)	158.96, 154.49, 129.80, 128.75, 123.06 (q, J_{CF} = 277 Hz), 113.90, 60.68 (q, J_{CF} = 36 Hz), 54.98, 44.55
5 a	0.22 (2:1, H/EE)	1791, 1729, 1514	7.25 (m, 2 H), 6.82 (m, 2 H), 4.77 (s, 2 H), 3.82 (s, 3 H), 3.79 (s, 3 H), 1.45 (s, 9 H)	158.49, 154.40, 151.44, 129.61, 128.54, 113.23, 82.29, 54.61, 53.14, 48.57, 27.43
5b	0.30 (2:1, H/EE)	1790, 1725, 1513	7.33 (s, 5 H), 7.21 (m, 2 H), 7.01 (m, 2 H), 5.21 (s, 2 H), 4.77 (s, 2 H), 3.78 (s, 3 H), 1.43 (s, 9 H)	158.53, 153.57, 151.69, 135.14, 129.66, 128.71, 128.08, 127.86, 127.82, 113.29, 82.42, 67.97, 54.67, 48.64, 27.50
5c	69.0–69.5 (20:1, H/EE)	1782, 1703, 1514	7.29 (m, 2 H), 6.84 (m, 2 H), 4.85 (s, 2 H), 4.82 (s, 2 H), 3.79 (s, 3 H), 1.50 (s, 9 H)	158.93, 152.10, 151.61, 129.35, 129.08, 113.66, 94.50, 83.71, 75.59, 55.13, 49.22, 27.86
5d	0.30 (2:1, H/EE)	17 9 0, 1726, 1514	7.23 (m, 2 H), 6.82 (m, 2 H), 5.93 (ddt, 1 H, $J = 17.2$, 10.4, 5.6 Hz), 5.34 (ddt, 1 H, J = 17.2, 1.3, 1.3 Hz), 5.24 (ddt, 1 H, $J = 10.4$, 1.3, 1.3 Hz), 4.78 (s, 2 H), 4.69 (ddd, 2 H, $J =$ 5.6, 1.3, 1.3 Hz), 3.79 (s, 3 H), 1.46 (s, 9 H)	158.58, 153.61, 151.64, 131.46, 129.73, 128.74, 118.17, 113.33, 82.47, 77.00, 66.94, 54.77, 48.66, 27.58
5e	0.20 (2:1, H/EE)	1789, 1726, 1521	8.18 (m, 2 H), 7.47 (m, 2 H), 7.22 (m, 2 H), 6.83 (m, 2 H), 5.32 (s, 2 H), 4.80 (s, 2 H), 3.79 (s, 3 H), 1.46 (s, 9 H)	158.84, 153.75, 151.56, 147.49, 142.77, 129.63, 128.76, 128.02, 123.55, 113.61, 83.22, 66.66, 55.07, 49.12, 27.78
5 f	0.30 (8:1, H/EE)	1789, 1722, 1514	7.23 (m, 2 H), 6.83 (m, 2 H), 4.76 (AB quartet, 2 H, $\Delta\delta = 0.04$, $J = 15$ Hz), 4.68 (td, 1 H, $J = 4.3$, 9.8 Hz), 3.78 (s, 3 H), 2.04 (m, 1 H), 1.8–0.9 (m, 8 H), 0.89 (d, 3 H, $J =$ 6.5 Hz), 0.83 (d, 3 H, $J = 7.0$ Hz), 0.72 (d, 3 H, $J = 6.9$ Hz)	158.70, 153.48, 152.40, 130.39, 128.78, 113.56, 82.56, 55.13, 48.80, 47.03, 40.75, 34.09, 31.51, 31.31, 27.95, 25.77, 23.09, 22.58, 21.91, 20.76, 16.00, 14.04
5g	0.40 (2:1, H/EE)	1755, 1706, 1515	7.3–7.2 (m, 2 H), 6.9–6.2 (m, 2 H), 4.79 (s, 2 H), 4.53 (q, 2 H, $J_{\rm HF}$ = 8.4 Hz), 3.78 (s, 3 H), 1.48 (s, 9 H)	159.00, 152.44, 151.55, 129.24, 122.79 (q, $J_{CF} = 277$ Hz), 113.67, 83.76, 62.06 (q, $J_{CF} =$ 37 Hz), 55.06, 49.23, 27.72
6a	0.25 (2:1, DM/EE)	1747, 1707	4.29 (ddq, 1 H, J = 8.6, 6.8 Hz), 3.79 (s, 3 H), 1.67 (m, 1 H), 1.52 (m, 1 H), 1.50 (s, 9 H), 1.28 (d, 3 H, J = 6.8 Hz), 1.26 (m, 8 H), 0.86 (unresolved t, 3 H)	154.99, 152.50, 81.89, 53.29, 52.85, 34.32, 31.46, 28.77, 27.66, 26.38, 22.27, 18.78, 13.72

Table II (Continued)

com-	$mp (^{\circ}C) or R_{\circ} (colvent)^{\alpha}$	IR (cm-1)	HINME (CDCL) &	13C NMR (CDCL) &
pound	Ity (BOIVEIIt)			
6b	0.30 (2:1, DM/EE)	1743, 1704	7.35 (m, 5 H), 5.20 (s, 2 H), 4.29 (ddq,	154.36, 152.72, 135.59, 128.32,
			1 H, J = 8.7, 6.8 Hz, 1.80 (m, 1 H), 1.50	128.07, 82.20, 67.93, 53.58,
			(m, 1 H), 1.43 (s, 9 H), 1.28 (d, 3 H), 1.24 (m,	34.45, 31.59, 28.89, 27.73, 26.52,
			8 H), 0.87 (unresolved t, 3 H)	22.41, 18.95, 13.91
6C	0.30 (2:1, DM/EE)	1752, 1714	4.82 (s, 2 H), 4.33 (ddq, 1 H, J = 8.7, 6.8,	152.50, 152.18, 94.69, 83.08,
			6.8 Hz), 1.72 (m, 1 H), 1.55 (m, 1 H), 1.53	75.38, 54.24, 34.37, 31.62,
			(s, 9 H), 1.34 (d, 3 H, J = 6.8 Hz), 1.25 (m, 1.25 Hz)	28.89, 27.75, 26.52, 22.42,
			8 H), 0.85 (unresolved t, 3 H)	18.92, 13.91
6 d	0.30 (2:1, DM/EE)	1745, 1706	6.00 (ddt, 1 H, J = 17.2, 10.3, 5.6 Hz), 5.36	154.23, 152.66, 131.83, 118.13,
			(dq, 1 H, J = 17.2, 1.5 Hz), 4.66 (dt, 2 H, 1.5 Hz)	82.10, 66.77, 53.45, 34.40, 31.56,
			J = 10.3, 1.3 Hz), 4.66 (dt, 2 H, $J = 5.6, 1.4$	28.86, 27.76, 26.48, 22.38, 18.88,
			Hz), 4.29 (ddq, 1 H, $J = 8.7, 6.8, 6.8$ Hz), 1.78	13.85
			$(\mathbf{m}, 1, \mathbf{n}), 1.52 (\mathbf{m}, 1, \mathbf{n}), 1.50 (8, 9, \mathbf{n}), 1.29 (0, 1, 1), 1.50 (1, 1, 1)$	
6.	0.00 (0.1 DM/EE)	1749 1705	3 H, 1.20 (m, $3 H$), 0.87 (unresolved t, $3 H$)	154 10 150 00 145 50 140 10
oe	0.20 (2:1, DIM/EE)	1743, 1700	$0.24 (\text{m}, 2 \text{n}), 1.07 (\text{m}, 2 \text{n}), 5.00 (\text{s}, 2 \text{n}), 1.07 (\text{m}, 2 \text{n}), 5.00 (\text{s}, 2 \text{n}), 1.00 (\text$	104.12, 103.38, 147.09, 143.13,
			4.31 (aaq, 1 Π , $J = 0.7, 0.0, 0.0 \Pi Z$), 1.79 (m 1 H) 1 55 (m 1 H) 1 40 (c 0 H) 1 20	128.00, 123.02, 82.73, 66.38,
			$(\mathbf{m}, 1, \mathbf{n}), 1, 25 (\mathbf{m}, 1, \mathbf{n}), 1, 49 (8, 9, \mathbf{n}), 1, 30$ $(\mathbf{d}, 2, \mathbf{H}), 1, 25 (\mathbf{m}, 9, \mathbf{H}), 0, 97 (\mathbf{y} = \mathbf{n} + 2, \mathbf{H})$	03.93, 34.47, 31.01, 28.90, 27.81,
c#	0.95 (9.1 DM/EE)	1740 1709	$(0, 3 \Pi), 1.23 (\text{m}, 6 \Pi), 0.67 (\text{unresolved } 1, 3 \Pi)$	20.00, 22.42, 18.99, 13.90 164 10, 169 16, 91 09, 76 50, 50 41
01	0.35 (2.1, DM/ EE)	1740, 1702	I = 996969100, 15.09(m, 11 H) 9.09	
			$(m, 2 \mathbf{H}) = 1.70 (m, 2 \mathbf{H}) = 1.40 (n, 2 \mathbf{H}) = 1.90$	47.10, 40.01, 34.30, 34.10, 31.70, 30.09, 97.05, 96.60, 95.06
			$(\mathbf{III}, \mathbf{Z}, \mathbf{II}), \mathbf{I}. \mathbf{III}, \mathbf{III}, \mathbf{I}. \mathbf{III}, \mathbf{IIII}, \mathbf{IIII}, \mathbf{IIII}, \mathbf{IIII}, IIIIIII, \mathbf{IIIIIII, IIIII, IIIII, IIIII, IIIIIII, IIIIII$	29.03, 27.93, 20.09, 20.90,
			$(u, 3 H, J = 6.5 H_{2}), 1.20 (III, 6 H), 0.51 (u, 3 H) J = 6.5 H_{2}), 0.00 (d, 3 H) J = 7.1 H_{2})$	23.21, 22.31, 21.94, 20.73, 19.26,
			0.70 (d 3 H J = 6.9 Hz)	10.10, 13.99
60	0.25 (2·1 DM/EE)	1753 1716	$452(a, 2H, J_{\rm H}) = 83H_2$ $44-42(m, 1H)$	159.65 159.18 199.84 (a. Jan =
1	0.20 (2.1, Ditt/ 111)	1100, 1710	19-17 (m 1 H) 16-14 (m 1 H) 150 (e	277 Hz 83 12 61 70 (g. Jen =
			9 H) 1 31 (d 3 H $J = 69$ Hz) 1 3–1 1 (m	37 Hz) 54 30 34 24 31 62
			8 H) 0.88 (t 3 H $J = 7$ Hz)	98 88 97 59 96 48 99 49
				18 67 13 83
6h	0.35 (2:1, DM/EE)	1741, 1704	4.21 (ddg, 1 H, $J = 8.8, 6.8, 6.8$ Hz), 1.70	153 18 81 38 52 84 34 54 31 64
	,,,		(m, 1H), 1.50 (m, 1H), 1.50 (s, 9H), 1.27	28.89.27.82.26.50.22.38
			(d, 3 H, J = 6.8 Hz), 1.27 (m, 8 H), 0.89	18.84, 13.85
			(unresolved t, 3 H)	

^c DM = CH₂Cl₂, EA = EtOAc, EE = Et₂O, H = hexanes. ^b Literature² mp 75-77 °C.

General Procedure for the Preparation of Alkyl tert-Butyl N-(p-Methoxybenzyl)iminodicarbonates (5). To a 0.25 M solution of N-(4-methoxybenzyl)carbamate 4 in CH₃CN was added DMAP (0.15 equiv) followed by di-tert-butyl dicarbonate (1.2 equiv).¹² The resulting mixture was stirred overnight and then diluted with ether. The ethereal solution was washed with 20% saturated KHSO₄, saturated NaHCO₃, and water, dried over MgSO₄, and concentrated in vacuo to provide crude N-(4methoxybenzyl)iminodicarbonate 5. Analytically pure samples were obtained by recrystallization or flash chromatography.

General Procedure for the Preparation of Alkyl tert-Butyl Iminodicarbonates 2. To a 0.25 M solution of 5 (1 equiv) in 3:1 CH₃CN/H₂O was added CAN (4 equiv) and the resulting mixture was stirred for 1 h.¹⁴ Ether was then added and the mixture was washed with several portions of 10% NaHCO₃ and water, dried over MgSO₄, filtered, and concentrated in vacuo. To the mixture of iminodicarbonate and *p*-anisaldehyde was added 3 M KHSO₃ (20 equiv) and the two-phase system was stirred for 15 min. Then ether was added, the layers were separated, and the ether layer was concentrated in vacuo. The residue was similarly treated with KHSO₃ twice more to provide crude iminodicarbonates (>95% pure) which could be used without further purification. Overall yields of 2 from chloroformates 3 or carbonate 7 are listed in Table I. Analytically pure samples were then prepared by recrystallization or flash chromatography.

General Procedure for the Preparation of N-(2-Octyl)iminodicarbonates 6. To a ~0.3 M solution of (\pm) -2-octanol (1 equiv) in THF was added iminodicarbonate 2 (1.1 equiv) and PPh₃ (1.1 equiv). A solution of DEAD (1.1 equiv) in THF (0.5 mL) was then added and the resulting mixture was stirred overnight and then concentrated in vacuo. Flash chromatography (30 g silica/g substrate, 2:1 CH₂Cl₂/Et₂O) of the resulting oil provided the products as colorless oils in the yields shown in Table I.

Phenyl 2,2,2-Trifluoroethyl Carbonate (7) was prepared by reaction of CF₃CH₂OH with ClCO₂Ph (100% yield) in pyridine.¹⁶ bp (air bath) 70 °C/0.4 torr; IR (neat) 1775, 1311, 1240, 1173 cm⁻¹; ¹H NMR δ 7.4–7.1 (m, 5 H), 4.58 (q, 2 H, J_{HF} = 8.1 Hz); ¹³C NMR δ 152.47, 150.77, 129.34, 126.22, 122.55 (q, $J_{CF} = 277$ Hz), 120.48, 63.35 (q, $J_{CF} = 37$ Hz); MS m/e (rel int) 220 (M⁺, 74), 176 (30), 141 (17), 107 (44), 77 (100). Anal. Calcd for C₉H₇F₃O₃: C, 49.10; H, 3.21. Found: C, 49.30; H, 3.31.

tert-Butyl N-(2-Octyl)carbamate (8). From 6c: A solution of 6c (100 mg, 0.248 mmol) in THF (1 mL) was treated with Zn dust (200 mg) followed by 1 M NH4OAc (aqueous). The slurry was stirred at rt for 16 h, diluted with Et₂O, and filtered through Celite. Flash chromatography (2 g silica, 2:1 CH₂Cl₂/Et₂O) of the concentrated filtrate furnished 8 (55 mg, 96% vield) as a colorless oil. From 6e: A mixture of 6e (100 mg, 0.245 mmol) and Pd(OH)₂ (6 mg) in THF (1 mL) was stirred under a balloon of H_2 for 16 h at rt. The mixture was diluted with Et₂O (20 mL) and filtered through a pad of Celite. Concentration of the filtrate followed by flash chromatographic purification gave 8 (52 mg, 92% yield). From 6g: A solution of 6g (100 mg, 0.28 mmol) in THF (2 mL) was stirred with 1 M NaOH (2 equiv) for 4 h at rt. Extractive workup provided 8 (62 mg, 96% yield) as the only product: IR (neat) 3338, 1699, 1517, 1371, 1172 cm⁻¹; ¹H NMR δ 4.76 (br s, 1 H), 3.61 (br m, 1 H), 1.44 (s, 9 H), 1.31 (m, 8 H), 1.10 (d, 3 H, J = 6.5 Hz), 0.88 (unresolved t, 3 H); ¹³C NMR δ 155.39, 78.82, 46.51, 37.33, 31.77, 29.15, 28.40, 25.93, 22.54, 21.24, 14.01; MS m/e (rel int) 230 (M + 1, 21), 174 (75), 144 (65), 130 (47), 88 (72). Anal. Calcd for C13H27NO2: C, 68.08; H, 11.86; N, 6.11. Found: C, 67.86; H, 11.85; N, 6.08.

Acknowledgment. We thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support and a postgraduate scholarship (to S.B.P.).

Supplementary Material Available: Mass spectral data and combustion analyses for compounds 2c-g, 4a-g, 5a-g, and 6a-h (2 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.